MIT

Papers

A list of the various papers and theses from MIT on satellite constellation reconfiguration are provided in reverse chronological order, below. Additional papers from other universities are provided in the review paper coming soon.

  • Gentgen, C., “Hybrid Chemical-Electric Propulsion Systems for CubeSats,” SM, thesis, Massachusetts Institute of Technology, 2022. URL:https://dspace.mit.edu/handle/1721.1/144493.
  • Lowey, C. E., “Uncertainty-Based Design Optimization and Decision Options for Responsive Maneuvering of Reconfigurable Satellite Constellations,” Ph.D. thesis, Massachusetts Institute of Technology, 2022. URL:https://dspace.mit.edu/handle/1721.1/145138.
  • Gentgen, C., Baber, S., Parker, W. E., Sirieys, E., Vigil, S. J., Yu, B., Moreno, M. R. A., Erkel, D., Hoying, M. A., Lombardo, S., Makikalli, A., Oneci, C., Ovienmhada, U., Crawley, E. D., and de Weck, O. L., “A path to flight for reconfigurable satellite constellations: Mission design and systems architecture,” Accelerating Space Commerce, Exploration, and New Discovery Conference, ASCEND 2021, URL:https://doi.org/10.2514/6.2021-4146.
  • Straub, A. N., Hastings, D. E., Miller, D. W., and Deweck, O. L., “Deployment strategies for reconfigurable satellite constellations,” Accelerating Space Commerce, Exploration, and New Discovery Conference, ASCEND 2020, URL:https://doi.org/10.2514/6.2020-4246.
  • Straub, A. N., “Expanded Tradespace Analysis and Operational Considerations for Reconfigurable Satellite Constellations,” SM thesis, Massachusetts Institute of Technology, 2020.
  • Morgan, S. J., McGrath, C. N., and de Weck, O. L., “Mobile target tracking using a reconfigurable low earth orbit constellation,” Accelerating Space Commerce, Exploration, and New Discovery Conference, ASCEND 2020, American Institute of Aeronautics and Astronautics Inc, AIAA, 2020. URL:https://doi.org/10.2514/6.2020-4247.
  • Morgan, S. J., “Reconfigurable Satellite Constellations for Mobile Target Tracking,” SM thesis, Massachusetts Institute of Technology, 2019, URL:https://dspace.mit.edu/handle/1721.1/139043.
  • Paek, S. W., Kim, S., and de Weck, O., “Optimization of reconfigurable satellite constellations using simulated annealing and genetic algorithm,” Sensors (Switzerland), Vol. 19, No. 4, 2019. URL:https://doi.org/10.3390/s19040765.
  • Paek, S. W., De Weck, O. L., and Smith, M. W., “Concurrent Design Optimization of Earth Observation Satellites and Reconfigurable,” Journal of the British Interplanetary Society, 2017, URL:JBIS_URL.
  • Legge Jr., R. S., “Optimization and Valuation of Reconfigurable Satellite Constellations Under Uncertainty,” Ph.D. thesis, Massachusetts Institute of Technology, 2014, URL:https://dspace.mit.edu/handle/1721.1/97261
  • Paek, S. W., “Reconfigurable Satellite Constellations for Geo-spatially Adaptive Earth Observation Missions,” SM thesis, Massachusetts Institute of Technology, 2012, URL:https://dspace.mit.edu/handle/1721.1/76106.
  • de Weck, O. L., Scialom, U., and Siddiqi, A., “Optimal reconfiguration of satellite constellations with the auction algorithm,” Acta Astronautica, Vol. 62, No. 2-3, 2008, pp. 112–130. URL:https://doi.org/10.1016/j.actaastro.2007.02.008
  • Siddiqi, A., Mellein, J., and De Weck, O. L., “Optimal Reconfigurations for Increasing Capacity of Communication Satellite Constellations,” 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2005, URL:http://web.mit.edu/deweck/www.
  • Scialom, U., “Optimization of Satellite Constellation Reconfiguration,” SM Thesis, Massachusetts Institute of Technology, 2003, URL:https://dspace.mit.edu/handle/1721.1/82803.
  • Chaize, M., “Enhancing the Economics of Satellite Constellations via Staged Deployment and Orbital Reconfiguration,” SM Thesis, Massachusetts Institute of Technology, 2003, URL:https://dspace.mit.edu/handle/1721.1/28285.